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ABSTRACT

Interaction of the Schiff base salicylideneimine-2-anisole (salanH) with

Cr(CO)6 yielded the dicarbonyl derivative Cr2O2(CO)2(salan)2. The

dinuclear oxo complex M2O4(salan)2, M = Mo and W, was isolated from

the reaction of M(CO)6 with salanH. Elemental, spectroscopic and

magnetic studies of the reported complexes allowed structures to be

proposed. The thermal properties of the complexes were investigated

by thermogravimetry.
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INTRODUCTION

Various transition and inner-transition metal complexes with bi-, tri-

and tetradentate Schiff bases containing nitrogen and oxygen donor atoms

play important roles in biological systems, and represent interesting models

for metalloenzymes that efficiently catalyze the reduction of dinitrogen and

dioxygen.[1,2] Furthermore, complexes of chromium, manganese, nickel and

ruthenium with a wide variety of Schiff bases, which have donor atoms

such as N2O2 and N4 around the metal ion, have been used as catalysts for

epoxidation reactions.[3] These complexes bind reversibly to molecular

oxygen with a change in oxidation state of the metal.[4 – 7] On the other

hand, the chemistry of oxo metal complexes with Schiff bases is well

established. For example, dioxomolybdenum(VI) and dioxotungsten(VI)

complexes of two isomeric Schiff bases, derived from salicylaldehyde and

2-hydroxy-1-naphthaldehyde, have been isolated and characterized.[8] Also,

the reactions of M(CO)6, M = Cr and Mo, with bis(2-hydroxyacetophe-

none)ethylenediimine (hapenH2) under atmospheric pressure give the oxo

derivatives M(O)(hapen) with the metal atom in the + 4 formal oxidation

state.[9] Furthermore, interaction of the Schiff base 2-hydroxyacetopheno-

nepropylimine (happramH) with M(CO)6, M = Cr or Mo, under reduced

pressure, gave the dicarbonyl complex M(CO)2(happramH)2. On the other

hand, the complex MoO(happram)2 was isolated from the reaction of

Mo(CO)6 with happramH in air.[10] Interest in studies of oxomolybdenum

and oxotungsten complexes stem from their useful application in hetero-

geneous catalysis, especially for epoxidation of olefins.[11]

In this paper, the thermal reactions of M(CO)6, M = Cr, Mo, and W

with salicylideneimine-2-anisole (salanH) (Figure 1) are described.

EXPERIMENTAL

The compounds M(CO)6, where M = Cr, Mo and W, were purchased

from Aldrich. Salicylideneimine-2-anisole was prepared as described in the

N

salicylideneimine-2-anisole (salanH)

H

OH MeO

C

Figure 1.
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literature.[12] All the solvents were of analytical reagent grade and they

were purified by standard methods.

Infrared measurements (KBr pellets) were carried out on a Shimadzu

8000 FT-IR spectrometer. Electronic absorption spectra were measured on a

Unicam UV2-300 UV-vis spectrophotometer. Samples of concentrations ca.

1 � 10� 5 M in DMSO, DMF, THF and CH2Cl2 were measured against

the solvent in the reference cell. NMR measurements were performed on

a Varian-Mercury 300 MHz spectrometer. Samples were dissolved in

(CD3)2SO with TMS as the internal reference. Magnetic susceptibility

(Gouy method) and ESR measurements of the complexes were carried out

on a Sherwood Scientific magnetic susceptibility balance, and a Bruker

ESR spectrometer model EMX. Thermogravimetric (TG) analysis was

carried out, under N2 atmosphere, with a heating rate of 10 �C/min using a

Shimadzu DT-50 thermal analyzer. Also, the complexes were characterized

by elemental analysis (Perkin-Elmer 2400 CHN elemental analyzer) and

mass spectroscopy (Finnigan MAT SSQ 7000). Table 1 gives the elemental

analysis and mass spectrometry data for the complexes.

Synthesis of Cr2O2(CO)2(salan)2 Complex

A mixture of Cr(CO)6 (0.12 g; 0.54 mmol) and salicylideneimine-2-

anisole (0.13 g; 0.55 mmol) in about 30 ml THF was heated to reflux under

atmospheric pressure for 12 h. The color of the reaction mixture changed

from yellow to light brown and finally to green with precipitation of a deep

green solid. The reaction mixture was cooled and the residue was isolated

by filtration. The complex was washed several times with boiling petroleum

ether and then recrystallized from DMF. The complex was left to dry in

vacuo for several hours (yield 70%).

Table 1. Elemental analysis and mass spectrometry data of the complexes.

Complex

Found (calcd.) (%) Mass spectrometry

C H N Mol. wt. m/z

Cr2O2(CO)2(salan)2 55.6

(55.9)

3.7

(3.8)

4.4

(4.3)

644.53 617

[P-CO]+

Mo2O4(salan)2 46.9

(47.5)

3.2

(3.4)

3.9

(4.0)

708.48 709

[P]+

W2O4(salan)2 38.2

(38.0)

2.6

(2.7)

3.1

(3.2)

884.18 869

[P-CH4]+
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Syntheses of Mo2O4(salan)2 and
W2O4(salan)2 Complexes

A similar procedure was employed as for the Cr2O2(CO)2(salan)2

complex, but using different reaction periods.

RESULTS AND DISCUSSION

Thermal reaction of salicylideneimine-2-anisole (salanH) with Cr(CO)6

resulted in the formation of a dinuclear complex with a molecular formula

Cr2O2(CO)2(salan)2. The IR spectrum of the salanH ligand displayed

bands due to n(OH), n(C = N), n(CO) due to phenolic and methoxy groups,

Table 2. The IR spectrum of the chromium complex showed that the bands

exerted appropriate shifts relative to those of the ligand itself, Table 2.

The n(C = N) and the n(C-O) methoxy bands of the salanH ligand moiety in

the complex was shifted to lower frequency, while the n(C-O) phenolic

band was displaced to higher frequency (Table 2). Also, the spectrum

showed that the n(OH) band had disappeared. These observations were

consistent with coordination of chromium to the azomethine nitrogen atom

and to the two oxygen atoms of the phenolic and methoxy groups.[10,13,14]

The removal of the hydrogen atom of the OH group upon complexation

indicated that ligand was bound to the metal oxidatively. On the other

hand, the IR spectrum of Cr2O2(CO)2(salan)2 complex displayed two strong

bands at 1944 and 1852 cm� 1 due to symmetric and asymmetric stretching

frequencies of two CO groups.[15] Furthermore, the IR spectrum of the

complex displayed two medium bands, which could be assigned as Cr-O-Cr

stretching frequencies.[15] Therefore, according to the spectroscopic obser-

vations, it was expected that each chromium would have a + 3 formal

oxidation state. Measurements of the magnetic susceptibly showed that the

complex has an effective magnetic moment of 3.07 BM. This value is lower

than the spin only value of three unpaired electrons for each chromium.

This may indicate the presence of an intramolecular antiferromagnetic

interaction between the two Cr(III) centers.[16,17] The ESR spectrum of a

powdered sample of Cr2O2(CO)2(salan)2, measured at room temperature,

exhibited a broad isotropic single line with a < g > value of 2.161.[16] Iso-

tropic lines of this type are usually observed, either due to intramolecular

spin exchange leading to broadening of the line, or due to the occupancy of

the unpaired electrons in degenerate orbitals.[18] The nature and pattern of

such an ESR spectrum suggested an almost octahedral environment around

each chromium(III) in the complex.[16] Thus, the structure of the complex

may have each chromium in an octahedral arrangement with a ligand bound
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to the metal through the ONO tridentate sites. Two bridged oxygen atoms

as well as a terminal carbonyl are also attached to each chromium atom

(Figure 2).

Reactions of M(CO)6, M = Mo and W, with salanH in THF gave

complexes with a molecular formula M2O4(salan)2. The IR spectra of both

molybdenum and tungsten complexes showed patterns similar to that of

the ligand, with the appropriate shifts, Table 2. Also, they showed the

disappearance of the OH bands of ligand moieties. In addition, the spectra

displayed asymmetric and symmetric stretching frequencies due to M = O

and M-O-M bonds, Table 2. The 1H NMR spectrum of the molybdenum

and tungsten complexes exhibited a multiplet and two singlets due to the

protons of the phenyl, methyl and CH = N groups. These signals were

Figure 2.

Figure 3.
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broad due to the paramagnetic characteristics of these complexes, vide

infra. These signals showed downfield shifts relative to those of ligand

itself [7.3 (m), 2.55 (s) and 9.01 (s) ppm]. The 1H NMR spectra of the two

complexes also showed the disappearance of the signal due to the hydroxyl

proton of the ligand moieties (13.86 ppm). The absence of this signal in the

spectra of the complexes indicated the coordination of the phenolic oxygen

to the metal through oxidative addition. The ESR spectra of powdered

samples of Mo2O4(salan)2 and W2O4(salan)2 measured at room temperature

exhibited a sharp isotropic single line with a < g > value of 1.915 for the

molybdenum complex and 2.111 for the tungsten complex.[16] Isotropic

lines of this type are usually observed for a single unpaired electron.[16]

Therefore, it can be concluded that the molybdenum and tungsten existed in

a + 5 (d1) formal oxidation state. According to the spectroscopic studies,

the complex consisted of two metals coordinated to two bridged oxygen

atoms. Each metal also coordinated to a tridentate salan ligand and a

terminal oxygen, Figure 3.

A proposed mechanism for the formation of the oxo complexes

M(O)(hapen), M = Cr or Mo; hapenH2 = the tetradentate bis-(2-hydroxy-

acetophenone)ethylenediimine, suggested that it was formed through a

Scheme 1.
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six coordinate intermediate M(CO)2(hapenH2).[9] On the other hand,

MoO(happram)2 complex, formed from interaction of the bidentate Schiff

base 2-hydroxyacetophenonepropylimine (happramH) with Mo(CO)6,

revealed that it was formed through a dihydride intermediate with one of

the hydride ligands trans to a CO group. Trans labilization effect of the

hydride ligand underwent loss of that CO group. Reaction with an oxygen

molecule gave the oxo derivative MoO(happram)2.[10] For the present

dinuclear oxo complexes, it can be speculated that interaction of the tri-

dentate Schiff base with the hexacarbonyls of group 6 would lead to

formation of the tricarbonyl intermediate I, Scheme 1. Reaction of that

intermediate with O2 might give the dinuclear complex II (the chromium

derivative). Further reaction with oxygen would result in the formation of

the dinuclear oxo derivative III (the molybdenum and tungsten complexes),

Scheme 1. It was previously found that reactions of M(CO)6, M = Mo and

W with the bidentate ligand dimethylglyoxime (DMG) in presence of

oxygen yielded the dinuclear oxo complex M2O6(DMG)2 through similar

mechanism of formation.[19,20]

Uv-vis. Studies

The electronic absorption spectra of the salanH Schiff base and its

complexes were investigated in different polar solvents (Table 3). Two

absorption bands were observed for salanH in DMF, DMSO, THF and

Table 3. The UV-vis. data for the reported complexes in different solvents.

Compound

Solvent

DMSO DMF THF CH2Cl2

SalanH 294(105300) 291(102717) 288 (9899) 280 (4300)

345(13030) 348(123140) 349 (7355) 348 (6510)

Cr2O2(CO)2(salan)2 290(26726) 299 (91770) 296 (21010) 302 (6118)

350 (6440)a 350 (22540)a 350 (4830)a 355 (3220)a

445 (1610)b 445 (5990)b 445 (1370)b 490 (2093)b

Mo2O4(salan)2 288 (65930) 307 (6110) Insol. Insol.

350 (15930)a 450 (354)b

440 (3540)b

W2O4(salan)2 293 (4138) 301 (3536) Insol. Insol.

360 (420)a 370 (1550)a

450 (220) 450 (332)b

ashoulder.
bbroad.

S1
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CH2Cl2 in the ranges of 280–294 and 345–349 nm due to p-p* and n-p*

transitions, respectively. It was found that the absorbance decreased as the

polarity of the solvent decreased, Table 3. In DMSO, on going from ligand

to complex, the p-p* electronic transition band at 294 showed a hypso-

chromic shift, while the n-p* band at 345 nm showed a bathochromic shift

with a considerable change in absorbance. These observations are consistent

with complex formation (Table 3). For the complexes MoO2L and WO2L,

where L = a Schiff base derived from o-aminobenzyl alcohol or hydro-

xybenzyl amine, similar trends were observed.[8] In addition, the three

complexes exhibited absorption bands at 440–450 nm that could be due to

ligand-to-metal charge transfer transitions.[21,22]

Thermogravimetric Analysis

The thermal studies of the chromium, molybdenum and tungsten com-

plexes were carried out using thermogravimetry (TG) and differential ther-

mogravimetry (DTG). Typical TG and DTG plots for the three complexes

are given in Figure 4.

The TG plot of Cr2O2(CO)2(salan)2 complex showed that it was

decomposed in two steps. The first decomposition step, which occurred in

the temperature range 392–502 K, was weak and had a broad peak with a

net weight loss of 13.7% (Figure 4). The percentage weight loss was

consistent with the elimination of two CO groups and a C2H6 species. On

the other hand, the second decomposition step was a composite peak with

three successive and overlapped decomposition peaks. The total weight

loss of the second decomposition step was found to be 63.0% and

corresponded to a material decomposition to give finally chromium oxide

(Cr2O3).

The thermogravimetric studies of the Mo2O4(salan)2 complex showed

that it was decomposed in two well-defined and non-overlapping steps,

Figure 4. The successive weight losses were observed in the temperature

range 670–1240 K. The first decomposition peak, occurred at 670–740 K

with a percentage weight loss of 22.6%, was due to a loss of a C8H14

species. The second step (1050–1240 K) had a net weight loss of 77.4%

and corresponded to the decomposition and volatilization of the rest of

the compound.

The TG plot of the complex W2O4(salan)2 showed that it decomposed,

like the molybdenum analog, in two steps within the temperature range

387–930 K. The percentage weight loss in the first decomposition peak

(9.9%) was attributed to the elimination of a C7H8 species. The second

decomposition peak, occurred at 774–930 K with a 18.8% weight loss, was

due to a material decomposition to leave a metallic residue.
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Figure 4.
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CONCLUSION

The three oxo complexes, Cr2O2(CO)2(salan)2, Mo2O4(salan)2 and

W2O4(salan)2 result from the reactions of M(CO)6 with the salanH Schiff

base. The bands in the IR spectra of the complexes revealed appropriate

shifts due to complex formation. Magnetic studies showed that the three

complexes were paramagnetic. Chromium existed as Cr(III), d3, while both

molybdenum and tungsten were present as M(V), d1, species. The ther-

mogravimetric studies of the complexes showed multistep degradation.

Although both Mo and W have similar structures, they had different ther-

mal decomposition mechanisms.
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